Marcinkiewicz multiplier theorem and the Sunouchi operator for Ciesielski-Fourier series
نویسنده
چکیده
Some classical results due to Marcinkiewicz, Littlewood and Paley are proved for the Ciesielski-Fourier series. The Marcinkiewicz multiplier theorem is obtained for Lp spaces and extended to Hardy spaces. The boundedness of the Sunouchi operator on Lp and Hardy spaces is also investigated. 2000 AMS subject classifications: Primary 41A15, 42A45, 42B25, Secondary 42C10, 42B30.
منابع مشابه
Translation Invariant Operators on Hardy Spaces over Vilenkin Groups
We show that a number of well known multiplier theorems for Hardy spaces over Vilenkin groups follow immediately from a general condition on the kernel of the multiplier operator. In the compact case, this result shows that the multiplier theorems of Kitada [6], Tateoka [13], Daly-Phillips [2], and Simon [11] are best viewed as providing conditions on the partial sums of the Fourier-Vilenkin se...
متن کاملTWO–PARAMETER SUNOUCHI OPERATOR WITH RESPECT TO CHARACTER SYSTEM OF p–SERIES FIELD IN THE KACZMARZ REARRANGEMENT
Let Gp be p -series field. We prove the restricted two-parameter Sunouchi operator T χ h is bounded from H q to Lq for 0 < q 1 . By means of interpolation and duality argument, this theorem can be extended to Hardy-Lorentz spaces. As a consequence, we prove the restricted Sunouchi operator is of weak type (L1,L1) . Mathematics subject classification (2010): 42C10.
متن کاملOperator Valued Series and Vector Valued Multiplier Spaces
Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous linear operators from $X$ into $Y$. If ${T_{j}}$ is a sequence in $L(X,Y)$, the (bounded) multiplier space for the series $sum T_{j}$ is defined to be [ M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}% T_{j}x_{j}text{ }converges} ] and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 133 شماره
صفحات -
تاریخ انتشار 2005